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Abstract:  Work by Kirby, et al. (2006) showed that combinatorial optimization of matrix/vector multiplication could lead to faster evaluation of finite element 
stiffness matrices. Using relationships between rows, an efficient set of operations can be generated to perform matrix-vector multiplication. My improved graph 
model of this problem solves this combinatorial optimization problem optimally for binary row relationships. I extend the representation by using hypergraphs to 
model more complicated row relationships, expressing an n-row relationship with an n-vertex hyperedge. My initial greedy algorithm for this hypergraph model 
has yielded significantly better results than the graph model for many matrices.

• Reducing redundant operations in building 
stiffness matrices
– Generate code to optimize construction of local 

stiffness matrices
– Many local stiffness matrices built
– Reuse optimized code when problem is rerun

• Finite element “Compilers” 
– FIAT (automates generation of FEs) 
– FFC (variational forms -> code for evaluation)

• Following on work by Kirby, et al., Texas Tech, 
University of Chicago
– Optimization of FFC generated code
– FErari

Motivation Matrix-Vector Multiplication

Element 
dependent

Element 
independent

Kirby, et al. showed that each element of FE local stiffness 
matrix can be calculated by the following Frobenius product:

Flattening the stiffness matrix into a vector, we get a matrix-
vector multiplication operation (y=Ax) with the following inner 
products for each row:

For the 2D Laplace equation, for example, we get the inner 
products of the following vectors:

Optimization Problem
Objective: To minimize the number of 
multiply add pairs (MAPs) in matrix/vector 
multiplication

e.g.
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Graph Model

• Relationships between rows represented by edges between  
corresponding vertices

• Additional edges connect each vertex to IP vertex, representing
inner product

- FErari does not include this relationship in graph model
• Edge weights are MAP cost for particular operation
• Edges in minimum spanning tree (MST) represent operations to 

optimally compute (with these operations) matrix-vector 
multiplication

• In my work, I used Prim’s algorithm to calculate MST

8 44 8R8
IP

23

8

3

4
2 IP

23

8
MST(5)Graph

R23 0 -44 -8

Graph Example

IP

15

3
6

8
11

10

4

17

2

13

7

14
2

2 2 2

2
1

1

23 4
2

IP

15

3

6

8
11 10

4

17

2

13

7

1

1
1

1

IP

15

3
6

8

11 10

4

17

2

13

713

3 3
3

3

3

3
3

32
2

3

IP

15

3
6

8

11
10

4

17

2

13

7
1

Inner Product Edges Scalar Multiple Edges

Partial Scalar Multiple Edges Solution (MST)

Hypergraph Extension
R1

R3

R6

Directed Hyperedge

1

3

6

2

3 33 3

0 01 1

1 10 0

First Pass: Greedy Algorithm
• Modified Prim’s algorithm to include hyperedges
• Polynomial time algorithm
• Solution no longer a tree
• No guarantee of optimum solution for hypergraph

Modified Prim’s Algorithm
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Hypergraph Model Results
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Future Work
• Larger size hyperedges

- Have implemented 3 and 4 vertex hyperedges
- Higher degree perhaps useful for 3D FE problems

• More nearly optimal and optimal solution methods

Matrix-Vector Multiplication Timings
2D Laplace FErari Matrices 3D Laplace FErari Matrices 

• 10,000 matrix vector multiplications per timing
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